Test 1 Numerical Mathematrics 2 November, 2018

Duration: 1 hour.

In front of the questions one finds the points. The sum of the points plus 1 gives the end mark for this test.

1. Consider the quadratic equation $x^{2}-2 x+d=0$, where d is the given data.
(a) [1.5] Compute a bound for the absolute and relative condition number of this problem for the case $|d|<1 / 2$ (also any perturbed d satisfies this condition). (The relation $\sqrt{x}-\sqrt{y}=\frac{x-y}{\sqrt{x}+\sqrt{y}}$ might be useful.)

Solution: Using the abc-formula one readily finds that $x(d)=1 \pm \sqrt{1-d}$. Now (note \pm is strict below)

$$
\begin{aligned}
\delta x=x(d+\delta d)-x(d) & =1 \pm \sqrt{1-(d+\delta d)}-(1 \pm \sqrt{1-d}) \\
& = \pm(\sqrt{1-(d+\delta d)}-\sqrt{1-d}) \\
& = \pm \frac{\delta d}{\sqrt{1-(d+\delta d)}+\sqrt{1-d}}
\end{aligned}
$$

The minimum value of the denominator is for the range of d considered $2 \sqrt{1 / 2}=$ $\sqrt{2}$. So $\left.K_{a b s}(d)=\max _{\{\delta d \mid}|d+\delta d|,|d|<1 / 2\right\}|\delta x| /|\delta d|<1 / \sqrt{2}$.
The relative condition number is just the absolute condition number times $|d| /|x|: K_{r e l}<|d| /[\sqrt{2}(1 \pm \sqrt{1-d})]$.
(b) [1.5] Compute the absolute condition number at $d=1$ for small perturbations of d.

Solution: We can just differentiate x wrt d and evaluate the result at $d=1$ to get the result. The derivative is

$$
d x / d d=- \pm \frac{1}{2 \sqrt{1-d}}
$$

We see that $K_{a b s}$ goes to infinity for $d \rightarrow 1$.
We could also use the previous part which immediately leads to $\delta x=\sqrt{\delta d}$ which still says that δx goes to zero with δd. However, the rate $\delta x / \delta d$ goes to infinity if δd goes to zero, which can be seen by dividing on both sides by δd.
2. Consider an algorithm which computes x from d, i.e. $x=G(d)$. However, due to round-off errors we are computing $\hat{x}=\hat{G}(d, u)$ where u is the round-off unit and $G(d)=$ $\hat{G}(d, 0)$.
(a) $[0.5]$ How is the stable relative backward error defined here?

Solution: \hat{x} is the solution of $\hat{x}=G(d+\delta d)$ where $\|\delta d\| /\|d\|<C u$.
(b) [0.5] How can one find the relative forward error from the relative backward error?

Solution: From $x=G(d)$ one hopes to find a finite $K_{r e l}$ s.t. $\|\delta x\| /\|x\|<$ $K_{\text {rel }}\|\delta d\| /\|/ \mid d\| \|$. Using the backward error we now know that the forward error is $\|\hat{x}-x\| /\|x\|<K_{r e l} C u$.
3. Consider the graph

(a) [1.5] Copy this graph to the paper and use that to explain the nested dissection ordering on this graph. You may limit the nesting to two steps. Also make a sketch of the associated vector of unknowns and the associated matrix structure such that it is clear where the unknowns and associated equations go.

Solution: Sketch attached.
(b) [0.5] Explain the relevance of reordering the matrix A, corresponding to the graph, for solving $A x=b$
4. Consider the problem

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
2
\end{array}\right]
$$

(a) [1.5] Show that the pseudo-inverse of the matrix is given by

$$
\left[\begin{array}{cc}
1 / 14 & 3 / 10 \\
1 / 7 & 0 \\
3 / 14 & -1 / 10
\end{array}\right]
$$

Solution: We just have to compute the SVD of A, i.e. $A=U \Sigma V^{T}$. From this follows that $A^{T} A=V \Sigma^{T} \Sigma V$ and $A A^{T}=U \Sigma \Sigma^{T} U$.

$$
A A^{T}=\left[\begin{array}{cc}
14 & 0 \\
0 & 10
\end{array}\right] \equiv D^{2}
$$

So the singular values are $\sqrt{14}$ and $\sqrt{10}$ and $U=I$ From $A=U \Sigma V^{T}$ it follows that $A=\Sigma V^{T}$. So the first two columns of V are just the normalized rows of A. Now

$$
A^{\dagger}=V \Sigma^{\dagger}=\left(D^{-1} A\right)^{T} D^{-1}=A^{T} D^{-2}
$$

(b) [1] Solve the problem using the pseudo-inverse.

Solution:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cc}
1 / 14 & 3 / 10 \\
1 / 7 & 0 \\
3 / 14 & -1 / 10
\end{array}\right]\left[\begin{array}{l}
6 \\
2
\end{array}\right]=\left[\begin{array}{c}
3 / 7+3 / 5 \\
6 / 7 \\
9 / 7-1 / 5
\end{array}\right]=\left[\begin{array}{c}
36 / 35 \\
6 / 7 \\
38 / 35
\end{array}\right]
$$

(c) [0.5] What is the central idea of using the pseudo-inverse?

Solution: The equation above admits a whole class of solutions. From that it selects that solution that is shortest in 2-norm.

